八年级(上)数学双休日作业5
备注:打★为挑战题,欢迎学有余力的同学挑战自己
一 选择
1.下列图形中,轴对称图形的是( )
A. B.
C.
D.
2.如图,OC是∠AOB的平分线,PD⊥DA于点D,PD=2,则P点到OB的距离是( )
A.1 B.2 C.3 D.4
3.下列四组线段中,可以构成直角三角形的是( )
A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=3,b=4,c=5 D.a=4,b=5,c=6
4.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为( )
A.4cm B.5cm C.6cm D.10cm (第6题)
5.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是( )
A.两条边长分别为4,5,它们的夹角为β
B.两个角是β,它们的夹边为4
C.三条边长分别是4,5,5
D.两条边长是5,一个角是β
★6.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为( )
A.8 B.12 C.4 D.6
二,填空题
7.等腰三角形的两边长分别为3cm和4cm,则它的周长是 cm.
8.如图,Rt△ABC,∠ACB=90°,以三边为边长向外作正方形,64、400分别为所在正方形的面积,则图中字母S所代表的正方形面积是 .
9.如图所示,△ABC中,BC的垂直平分线交AB于点E,若△ABC的周长为10,BC=4,则△ACE的周长是 .
10.如图,有一块四边形花圃ABCD,∠ADC=90°,AD=4m,AB=13m,BC=12m,DC=3m,该花圃的面积为 m2.
11.若△ABC为等腰三角形,顶角∠B=100°,则底角∠A= .
12.若△ABC三边之比为5:12:13,则△ABC是 三角形.
13.如图,点D、E分别在AB、AC上,AD=AE,BD=CE.若∠BDC=80°,则∠AEB= .
14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C= 度.
三,解答题
21.已知△ABC中,∠BAC=130°,BC=26,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G.求:
(1)∠EAF的度数.
(2)求△AEF的周长.
24.如图,△ABC中,∠ACB=90°,以AC为底边作等腰三角形△ACD,AD=CD,过点D作DE⊥AC,垂足为F,DE与AB相交于点E,连接CE.
(1)求证:AE=CE=BE;
(2)若AB=15cm,BC=9cm,点P是射线DE上的一点.则当点P为何处时,△PBC的周长最小,并求出此时△PBC的周长.
★26.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.
(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;
(2)求证:BG2﹣GE2=EA2.
★27.操作探究:
数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK.如图2所示:
探究:
(1)若∠1=70°,∠MKN= °;
(2)改变折痕MN位置,△MNK始终是 三角形,请说明理由;
应用:
(3)爱动脑筋的小明在研究△MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN的面积最小值为,此时∠1的大小可以为 °
(4)小明继续动手操作,发现了△MNK面积的最大值.请你求出这个最大值.